CHYMOTRYPSIN


DrugBank ID: db09375
DrugCentral: chymotrypsin
Synonymous :alpha-chymotrypsin | chymotrypsin a | chymotrypsin b | chymotrypsine | chymotrypsinum | quimotripsina



Drug Sentece Context


Table 1. Analysis of context sentence of chymotrypsin gene in 1 abstracts.

pmid sentence
32238094 The functional importance of Chymotrypsin-like protease (3CLpro) in viral replication and maturation turns it into an attractive target for the development of effective antiviral drugs against SARS and other coronaviruses. […] Herein, we applied computational drug design methods to identify Chymotrypsin-like protease inhibitors from FDA approved antiviral drugs and our in-house database of natural and drug-like compounds of synthetic origin. […] Our results indicate that the identified compounds can inhibit the function of Chymotrypsin-like protease (3CLpro) of Coronavirus.
32292689 Structure and screening results of important targets such as 3-chymotrypsin-like protease (3CLpro), Spike, RNA-dependent RNA polymerase (RdRp), and papain like protease (PLpro) were discussed in detail.
32296570 The viral 3-chymotrypsin-like cysteine protease (3CLpro) enzyme controls coronavirus replication and is essential for its life cycle.
32307268 One-hundred and eighteen candidate constituents showed a high binding affinity with SARS-coronavirus-2 3-chymotrypsin-like protease (3CLpro), as indicated by molecular docking using computational pattern recognition.
32367767 The conserved 3-chymotrypsin-like protease (3CLpro), which controls coronavirus replication is a promising drug target for combating the coronavirus infection.
32374074 The main protease (Mpro , also called 3-chymotrypsin-like protease) of SARS-CoV-2 is a potential target for treatment of COVID-19.
32375574 Lopinavir has the highest binding affinities to the pocket site of SARS-CoV spike glycoprotein/ACE-2 complex, cyclic AMP-dependent protein kinase A and 3-Chymotrypsin like protease while redemsivir has the highest binding affinities for vacuolar proton-translocating ATPase (V-ATPase) and papain-like proteins.
32402186 An attractive therapeutic target for CoVs is the main protease (Mpro) or 3-chymotrypsin-like cysteine protease (3CLpro), as this enzyme plays a key role in polyprotein processing and is active in a dimeric form.
32416679 Such machinery encompasses SARS-CoV-2 envelope spike (S) glycoprotein required for host cell entry by binding to the ACE2 receptor, viral RNA-dependent RNA polymerase (RdRp) and 3-chymotrypsin-like main protease (3Clpro/Mpro).
32476574 Thus, three fumiquinazoline alkaloids scedapin C (15), quinadoline B (19) and norquinadoline A (20), the polyketide isochaetochromin D1 (8), and the terpenoid 11a-dehydroxyisoterreulactone A (11) exhibited high binding affinities on the target proteins, papain-like protease (PLpro), chymotrypsin-like protease (3CLpro), RNA-directed RNA polymerase (RdRp), non-structural protein 15 (nsp15), and the spike binding domain to GRP78.
32537610 Aprotinin is a nonspecific protease inhibitor especially of trypsin, chymotrypsin, plasmin, and kallikrein, and it is many years in clinical use.
32551639 The crystal structure for the main protease (Mpro) of SARS-CoV-2, 3-chymotrypsin-like cysteine protease (3CLpro), was recently made available and is considerably similar to the previously reported SARS-CoV. […] Molecular docking of 13 antivirals against the 3-chymotrypsin-like cysteine protease (3CLpro) enzyme was accomplished, and indinavir was described as a lead drug with a docking score of -8.824 and a XP Gscore of -9.466 kcal/mol.
32579061 The 3-chymotrypsin-like protease (3CLpro), an essential enzyme for viral replication, is a valid target to combat SARS-CoV and MERS-CoV.
32613637 The evidence reviewed here indicates that naringenin might exert therapeutic effects against COVID-19 through the inhibition of COVID-19 main protease, 3-chymotrypsin-like protease (3CLpro), and reduction of angiotensin converting enzyme receptors activity.
32646487 The viral replicating enzyme, 3-chymotrypsin-like cysteine protease (3CLpro) that plays a key role in its pathogenicity was used to assess its affinity with pharmacological inhibitors and repurposed drugs such as anti-viral flavones, biflavanoids, anti-malarial drugs and vitamin supplements.
32686993 Among the predicted drugs compounds, clemizole, monorden, spironolactone and tanespimycin showed high binding energies; among the studied repurposing compounds, remdesivir, simeprevir and valinomycin showed high binding energies; among the predicted acidic compounds, acetylursolic acid and hardwickiic acid gave high binding energies; while among the studied anthraquinones and glycosides compounds, ellagitannin and friedelanone showed high binding energies against 3-Chymotrypsin-like protease (3CLpro), Papain-like protease (PLpro), helicase (nsp13), RNA-dependent RNA polymerase (nsp12), 2’-O-ribose methyltransferase (nsp16) of SARS-CoV-2 and DNA-PK and CK2alpha in human.
32719799 Targeting the structural proteins or cellular receptors of 2019-nCoV, including coronavirus chymotrypsin-like (3CLpro or Mpro), helicase (nsP13), S protein, and human angiotensin converting enzyme 2 (ACE2), holds promise for preventing infection.
32729180 The targets include spike glycoprotein and various host proteases mediating the entry of the virus into the cells, viral chymotrypsin- and papain-like proteases, and RNA dependent RNA polymerase.
32745925 Similar to SARS-CoV and MERS-CoV, the viral key 3-chymotrypsin-like cysteine protease enzyme (3CLPro), which controls 2019-nCoV duplications and manages its life cycle, could be pointed as a drug discovery target.
32783247 The main 3-chymotrypsin-like cysteine protease (3CLPro) enzyme of SARS-CoV-2, which operates its replication, could be used as a medication discovery point.
32824639 Therefore, the main protease (3 chymotrypsin-like protease (3CLpro) or Mpro) encoded by the viral genome is an attractive drug target because it plays an important role in cleaving viral polyproteins into functional proteins.
32834113 This study investigates the inhibitory effect of the 3-chymotrypsin-like protease of SARS-CoV-2 (3CLpro) using pharmaceuticals containing α-ketoamide group and pyridone ring based on molecular docking.
32837954 For this purpose, five proteins of COVID-19 (3-chymotrypsin-like protease (3CLpro), Papain-Like protease (PLpro), cleavage site, HR1 and RBD in Spike protein) were selected as target proteins for drug repositioning.
32848790 In addition, natural products were shown to inhibit the SARS-CoV-2 life-cycle related proteins such as papain-like or chymotrypsin-like proteases.
32866534 Angiotensin-converting enzyme 2 (ACE2) receptor serves as an entry point for this deadly virus while the proteases like furin, transmembrane protease serine 2 (TMPRSS2) and 3 chymotrypsin-like protease (3CLpro) are involved in the further processing and replication of SARS-CoV-2.
32869854 Severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) main protease (Mpro) is a chymotrypsin-type cysteine protease that is needed to produce functional proteins essential for virus replication and transcription.
32875950 Out of all the known resolved structures related to SARS-CoV-2; 3-chymotrypsin (3 C) like protease (3CLpro) is considered as an attractive anti-viral drug compound on the grounds of its role in viral replication and probable non-interactive competency to bind to any viral host protein.
32896566 The coronavirus 3-chymotrypsin-like cysteine protease (3CLpro) controls replication and is therefore considered a major target for antiviral discovery.
32911757 In the current literature scenario, the papain-like and the 3-chymotrypsin-like proteases seem to be the most deeply investigated and a number of isolated natural (poly)phenols has been screened for their efficacy.
32947136 3-Chymotrypsin like protease (also known as Mpro) and papain-like protease, have emerged as the potential therapeutic targets for drug discovery against coronaviruses owing to their crucial role in viral entry and host-cell invasion.
32960061 These drugs can inhibit the viral protease, called chymotrypsin-like cysteine protease, also known as Main protease (3CLpro); hence, we studied the binding efficiencies of 4-aminoquinoline and 8-aminoquinoline analogs of chloroquine.
32979476 These targets including an important host cell receptor, i.e., angiotensin-converting enzyme ACE2 and several viral proteins e.g. spike glycoprotein (S) containing S1 and S2 domains, SARS CoV Chymotrypsin-like cysteine protease (3CLpro), papain-like cysteine protease (PLpro), helicases and RNA-dependent RNA polymerase (RdRp).
32982616 In fact, numerous flavonoids were found to have antiviral effects against SARS-and MERS-CoV by mainly inhibiting the enzymes 3-chymotrypsin-like protease (3CLpro) and papain-like protease (PLpro).
33006576 The replication of SARS-CoV-2 produces two large polyproteins, pp1a and pp1ab, that are inactive until cleavage by the viral chymotrypsin-like cysteine protease enzyme (3CL Mpro) into a series of smaller functional proteins.
33007575 Thus it is suggested that the identified compounds can inhibit Chymotrypsin-like protease (3CLpro) of SARS-CoV-2.
33016666 The major druggable targets of SARS-CoV-2 include 3-chymotrypsin-like protease (3CLpro), papain-like protease (PLpro), RNA-dependent 26 RNA polymerase, and spike (S) protein.
33027419 Among these proteins, 3-chymotrypsin-like cysteine protease (3CLpro), also named main protease, and the RNA-dependent RNA polymerase (RdRp), have been identified as fundamental targets due to its importance in the viral replication stages.
33034398 The major druggable targets of SARS-CoV-2 include 3-chymotrypsin-like protease (3CLpro), papain-like protease (PLpro), RNA-dependent RNA polymerase, and spike (S) protein.