CHYMOTRYPSIN
DrugBank ID: db09375
DrugCentral: chymotrypsin
Synonymous :alpha-chymotrypsin | chymotrypsin a | chymotrypsin b | chymotrypsine | chymotrypsinum | quimotripsina
Drug Sentece Context
Table 1. Analysis of context sentence of chymotrypsin gene in 1 abstracts.
pmid | sentence |
---|---|
32238094 | The functional importance of Chymotrypsin-like protease (3CLpro) in viral replication and maturation turns it into an attractive target for the development of effective antiviral drugs against SARS and other coronaviruses. […] Herein, we applied computational drug design methods to identify Chymotrypsin-like protease inhibitors from FDA approved antiviral drugs and our in-house database of natural and drug-like compounds of synthetic origin. […] Our results indicate that the identified compounds can inhibit the function of Chymotrypsin-like protease (3CLpro) of Coronavirus. |
32292689 | Structure and screening results of important targets such as 3-chymotrypsin-like protease (3CLpro), Spike, RNA-dependent RNA polymerase (RdRp), and papain like protease (PLpro) were discussed in detail. |
32296570 | The viral 3-chymotrypsin-like cysteine protease (3CLpro) enzyme controls coronavirus replication and is essential for its life cycle. |
32307268 | One-hundred and eighteen candidate constituents showed a high binding affinity with SARS-coronavirus-2 3-chymotrypsin-like protease (3CLpro), as indicated by molecular docking using computational pattern recognition. |
32367767 | The conserved 3-chymotrypsin-like protease (3CLpro), which controls coronavirus replication is a promising drug target for combating the coronavirus infection. |
32374074 | The main protease (Mpro , also called 3-chymotrypsin-like protease) of SARS-CoV-2 is a potential target for treatment of COVID-19. |
32375574 | Lopinavir has the highest binding affinities to the pocket site of SARS-CoV spike glycoprotein/ACE-2 complex, cyclic AMP-dependent protein kinase A and 3-Chymotrypsin like protease while redemsivir has the highest binding affinities for vacuolar proton-translocating ATPase (V-ATPase) and papain-like proteins. |
32402186 | An attractive therapeutic target for CoVs is the main protease (Mpro) or 3-chymotrypsin-like cysteine protease (3CLpro), as this enzyme plays a key role in polyprotein processing and is active in a dimeric form. |
32416679 | Such machinery encompasses SARS-CoV-2 envelope spike (S) glycoprotein required for host cell entry by binding to the ACE2 receptor, viral RNA-dependent RNA polymerase (RdRp) and 3-chymotrypsin-like main protease (3Clpro/Mpro). |
32476574 | Thus, three fumiquinazoline alkaloids scedapin C (15), quinadoline B (19) and norquinadoline A (20), the polyketide isochaetochromin D1 (8), and the terpenoid 11a-dehydroxyisoterreulactone A (11) exhibited high binding affinities on the target proteins, papain-like protease (PLpro), chymotrypsin-like protease (3CLpro), RNA-directed RNA polymerase (RdRp), non-structural protein 15 (nsp15), and the spike binding domain to GRP78. |
32537610 | Aprotinin is a nonspecific protease inhibitor especially of trypsin, chymotrypsin, plasmin, and kallikrein, and it is many years in clinical use. |
32551639 | The crystal structure for the main protease (Mpro) of SARS-CoV-2, 3-chymotrypsin-like cysteine protease (3CLpro), was recently made available and is considerably similar to the previously reported SARS-CoV. […] Molecular docking of 13 antivirals against the 3-chymotrypsin-like cysteine protease (3CLpro) enzyme was accomplished, and indinavir was described as a lead drug with a docking score of -8.824 and a XP Gscore of -9.466 kcal/mol. |
32579061 | The 3-chymotrypsin-like protease (3CLpro), an essential enzyme for viral replication, is a valid target to combat SARS-CoV and MERS-CoV. |
32613637 | The evidence reviewed here indicates that naringenin might exert therapeutic effects against COVID-19 through the inhibition of COVID-19 main protease, 3-chymotrypsin-like protease (3CLpro), and reduction of angiotensin converting enzyme receptors activity. |
32646487 | The viral replicating enzyme, 3-chymotrypsin-like cysteine protease (3CLpro) that plays a key role in its pathogenicity was used to assess its affinity with pharmacological inhibitors and repurposed drugs such as anti-viral flavones, biflavanoids, anti-malarial drugs and vitamin supplements. |
32686993 | Among the predicted drugs compounds, clemizole, monorden, spironolactone and tanespimycin showed high binding energies; among the studied repurposing compounds, remdesivir, simeprevir and valinomycin showed high binding energies; among the predicted acidic compounds, acetylursolic acid and hardwickiic acid gave high binding energies; while among the studied anthraquinones and glycosides compounds, ellagitannin and friedelanone showed high binding energies against 3-Chymotrypsin-like protease (3CLpro), Papain-like protease (PLpro), helicase (nsp13), RNA-dependent RNA polymerase (nsp12), 2’-O-ribose methyltransferase (nsp16) of SARS-CoV-2 and DNA-PK and CK2alpha in human. |
32719799 | Targeting the structural proteins or cellular receptors of 2019-nCoV, including coronavirus chymotrypsin-like (3CLpro or Mpro), helicase (nsP13), S protein, and human angiotensin converting enzyme 2 (ACE2), holds promise for preventing infection. |
32729180 | The targets include spike glycoprotein and various host proteases mediating the entry of the virus into the cells, viral chymotrypsin- and papain-like proteases, and RNA dependent RNA polymerase. |
32745925 | Similar to SARS-CoV and MERS-CoV, the viral key 3-chymotrypsin-like cysteine protease enzyme (3CLPro), which controls 2019-nCoV duplications and manages its life cycle, could be pointed as a drug discovery target. |
32783247 | The main 3-chymotrypsin-like cysteine protease (3CLPro) enzyme of SARS-CoV-2, which operates its replication, could be used as a medication discovery point. |
32824639 | Therefore, the main protease (3 chymotrypsin-like protease (3CLpro) or Mpro) encoded by the viral genome is an attractive drug target because it plays an important role in cleaving viral polyproteins into functional proteins. |
32834113 | This study investigates the inhibitory effect of the 3-chymotrypsin-like protease of SARS-CoV-2 (3CLpro) using pharmaceuticals containing α-ketoamide group and pyridone ring based on molecular docking. |
32837954 | For this purpose, five proteins of COVID-19 (3-chymotrypsin-like protease (3CLpro), Papain-Like protease (PLpro), cleavage site, HR1 and RBD in Spike protein) were selected as target proteins for drug repositioning. |
32848790 | In addition, natural products were shown to inhibit the SARS-CoV-2 life-cycle related proteins such as papain-like or chymotrypsin-like proteases. |
32866534 | Angiotensin-converting enzyme 2 (ACE2) receptor serves as an entry point for this deadly virus while the proteases like furin, transmembrane protease serine 2 (TMPRSS2) and 3 chymotrypsin-like protease (3CLpro) are involved in the further processing and replication of SARS-CoV-2. |
32869854 | Severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) main protease (Mpro) is a chymotrypsin-type cysteine protease that is needed to produce functional proteins essential for virus replication and transcription. |
32875950 | Out of all the known resolved structures related to SARS-CoV-2; 3-chymotrypsin (3 C) like protease (3CLpro) is considered as an attractive anti-viral drug compound on the grounds of its role in viral replication and probable non-interactive competency to bind to any viral host protein. |
32896566 | The coronavirus 3-chymotrypsin-like cysteine protease (3CLpro) controls replication and is therefore considered a major target for antiviral discovery. |
32911757 | In the current literature scenario, the papain-like and the 3-chymotrypsin-like proteases seem to be the most deeply investigated and a number of isolated natural (poly)phenols has been screened for their efficacy. |
32947136 | 3-Chymotrypsin like protease (also known as Mpro) and papain-like protease, have emerged as the potential therapeutic targets for drug discovery against coronaviruses owing to their crucial role in viral entry and host-cell invasion. |
32960061 | These drugs can inhibit the viral protease, called chymotrypsin-like cysteine protease, also known as Main protease (3CLpro); hence, we studied the binding efficiencies of 4-aminoquinoline and 8-aminoquinoline analogs of chloroquine. |
32979476 | These targets including an important host cell receptor, i.e., angiotensin-converting enzyme ACE2 and several viral proteins e.g. spike glycoprotein (S) containing S1 and S2 domains, SARS CoV Chymotrypsin-like cysteine protease (3CLpro), papain-like cysteine protease (PLpro), helicases and RNA-dependent RNA polymerase (RdRp). |
32982616 | In fact, numerous flavonoids were found to have antiviral effects against SARS-and MERS-CoV by mainly inhibiting the enzymes 3-chymotrypsin-like protease (3CLpro) and papain-like protease (PLpro). |
33006576 | The replication of SARS-CoV-2 produces two large polyproteins, pp1a and pp1ab, that are inactive until cleavage by the viral chymotrypsin-like cysteine protease enzyme (3CL Mpro) into a series of smaller functional proteins. |
33007575 | Thus it is suggested that the identified compounds can inhibit Chymotrypsin-like protease (3CLpro) of SARS-CoV-2. |
33016666 | The major druggable targets of SARS-CoV-2 include 3-chymotrypsin-like protease (3CLpro), papain-like protease (PLpro), RNA-dependent 26 RNA polymerase, and spike (S) protein. |
33027419 | Among these proteins, 3-chymotrypsin-like cysteine protease (3CLpro), also named main protease, and the RNA-dependent RNA polymerase (RdRp), have been identified as fundamental targets due to its importance in the viral replication stages. |
33034398 | The major druggable targets of SARS-CoV-2 include 3-chymotrypsin-like protease (3CLpro), papain-like protease (PLpro), RNA-dependent RNA polymerase, and spike (S) protein. |
33052202 | Recently, triazole derivatives have been explored as potent inhibitors of human coronaviruses by blocking the viral enzymes such as 3-chymotrypsin-like protease (3CLpro) and helicase, important for viral replication. |
33057452 | Our results indicate that the rutin is a potential drug to inhibit the function of Chymotrypsin-like protease (3CL pro) of Coronavirus. |
33109027 | Herein, we systemically discuss the structural-functional relationships of the spike, 3-chymotrypsin-like protease (3CLpro), papain like protease (PLpro) and RNA-dependent RNA polymerase (RdRp), as these are prominent structural features of corona virus. |
33134697 | Here, we contribute to these efforts by building machine-learning predictive models to identify novel drug candidates for the viral targets 3 chymotrypsin-like protease (3CLpro) and RNA-dependent RNA polymerase (RdRp). |
33137165 | Papain-like peptidases (PLPs) and chymotrypsin-like cysteine 3C-like peptidase are essential for coronaviral replication and represent attractive antiviral drug targets. |
33141358 | The 3-chymotrypsin-like protease (3CLpro) is a cysteine protease which causes the proteolysis of the replicase polyproteins to generate functional proteins, which is a crucial step for viral replication and infection. |
33183205 | This study emphasized on important covalent and non-covalent small molecule inhibitors which effectively inhibited chymotrypsin-like cysteine protease (3CLpro) and papain-like protease (PLpro) of two SARS coronaviruses i.e. |
33254234 | Structure-based virtual screening (SBVS) was used to select the best inhibitors of 3-chymotrypsin-like protease (3CL-Pr) and RNA-dependent RNA polymerase (RdRp) among the FDA-approved drugs and to evaluate the impact of mutations on binding affinity of these drugs. |
33297920 | This review discusses the current understanding of SARS-CoV-2 virology, its target structural proteins (S- glycoprotein), non-structural proteins (3- chymotrypsin-like protease, papain-like protease, RNA-dependent RNA polymerase, and helicase) and accessory proteins, drug discovery strategies (drug repurposing, artificial intelligence, and high-throughput screening), and the current status of antiviral drug development. |
33302163 | From various studies on the SARS-CoV-2 reported in the literature, we chose possible drug targets (Chymotrypsin-like protease, RNA dependant RNA polymerase, Papain like protease, Spike RBD and ACE2 receptor with spike RBD) which are vital proteins. |
33383190 | In this review, we have recapitulated the structural details of four key viral enzymes, RNA-dependent RNA polymerase, 3-chymotrypsin like protease, papain-like protease and helicase, and two host factors including angiotensin-converting enzyme 2 and transmembrane serine protease involved in the SARS-CoV-2 pathogenesis, and described the potential hotspots present on these structures which could be explored for therapeutic intervention. |
33386025 | Virtual screening of 75 FDA-approved potential antiviral drugs against the target proteins, spike (S) glycoprotein, human angiotensin-converting enzyme 2 (hACE2), 3-chymotrypsin-like cysteine protease (3CLpro), cathepsin L (CTSL), nucleocapsid protein, RNA-dependent RNA polymerase (RdRp) and non-structural protein 6 (NSP6), resulted in the selection of seven drugs which preferentially bind to the target proteins. |
33404263 | In this review, a number of broad-spectrum antivirals with potential efficacy to inhibit the virus replication via targeting the virus spike protein (S protein), RNA-dependent RNA polymerase (RdRp), 3-chymotrypsin-like protease (3CLpro) and papain-like protease (PLpro) that are critical in the pathogenesis and life cycle of coronavirus, have been evaluated as possible treatment options against SARS-CoV-2 in COVID-19 patients. |
33430659 | The experience of combating SARS-CoV and MERS-CoV has shown that inhibiting the 3-chymotrypsin-like protease (3CLpro) blocks the replication of the virus. |
33437137 | In this study, we aim to find antagonists that may inhibit the activity of the three major viral targets: SARS-CoV-2 3-chymotrypsin-like protease (6LU7), SARS-CoV-2 spike protein (6VYB), and a host target human angiotensin-converting enzyme 2 (ACE2) receptor (1R42), which is the entry point for the viral encounter, were studied with the prospects of identifying significant drug candidate(s) against COVID-19 infection. |
33450678 | Vitamins (A, B, C, D, and E), minerals (selenium and zinc), and bioactive substances from curcumin, echinacea, propolis, garlic, soybean, green tea, and other polyphenols were identified as having potential roles in interfering with spike glycoproteins, angiotensin converting enzyme 2, and transmembrane protease serine 2 at the entry site, and inhibiting activities of papain-like protease, 3 chymotrypsin-like protease, and RNA-dependent RNA polymerase in the replication cycle of severe acute respiratory syndrome coronavirus 2. |
33473151 | Herein, we have identified potential drugs that target the 3-chymotrypsin like protease (3CLpro), the main protease that is pivotal for the replication of SARS-CoV-2. |
33500591 | Virus main protease or chymotrypsin-like protease plays a pivotal role in virus replication and transcription; thus, it is considered as an attractive drug target to combat the COVID-19. […] In this study, multistep structure based virtual screening of CAS antiviral database is performed for the identification of potent and effective small molecule inhibitors against chymotrypsin-like protease of SARS-CoV-2. |
33515606 | The 3-chymotrypsin-like cysteine protease (3CLpro) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is considered a major target for the discovery of direct antiviral agents. |